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Moment evolution and level-crossing statistics in dichotomous and multilevel flows
with time-dependent control parameters
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Institut Royal Me´téorologique de Belgique, Avenue Circulaire 3, 1180 Brussels, Belgium

~Received 5 September 2001; published 16 May 2002!

We study the dynamics of the first two moments and of threshold crossings by the stochastic trajectory in

dichotomous diffusionẋ5j(t), wherej(t) is a dichotomous Markov process. The transition rate of the latter
is regarded as a control parameter and allowed to have specified time variations. The stabilizing or destabiliz-
ing effect of this variation is demonstrated, and qualitative changes in the statistical properties of the system are
shown to occur. The analysis is then extended to linear dichotomous flow, and to a generalization of dichoto-
mous diffusion in whichx is driven by a multilevel Markov noise.
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I. INTRODUCTION

One of the most useful indicators of the stability of
natural phenomenon is the smallness of the standard de
tion of the relevant variable~s! ~and its higher order analogs!,
as compared to the mean@1,2#. Less familiar, although quite
relevant, is the sparseness of crossings by the dynamica
jectory of levels distinctly different from the mean~or, more
significantly, from the most probable value!, the statistics of
such level crossingsbeing in turn intimately related to th
problem ofextreme values@3–5#.

Investigations of moment dynamics and level crossing
extreme value statistics are usually limited tostationarydy-
namical systems, i.e., systems that are subjected to fixed
trol parameters and possess sufficiently strong ergodic p
erties. There are, however, compelling reasons for exten
these investigations to systems forced by time-depen
control parameters. Two particularly significant instanc
calling for such an extension are possible changes of tre
in atmospheric dynamics in connection with anthropoge
forcings@6#, and the dynamics of financial markets in whic
background information is continuously updated by the o
come of the dynamics itself@7#. Other systems in which
similar effects come into play are switching phenomena
electronic or optical devices, and chemical or biological p
cesses under real-world environmental conditions. The
of the present work is to analyze the role of the time dep
dence of the control parameters on moment evolution
level-crossing statistics in a class of stochastic dynam
systems forced by dichotomous noise@3,4,8–10# and a mul-
tilevel generalization thereof@11#.

The principal motivation for focusing on dynamic
sytems of this type is their genericness. They may indeed
mapped, via appropriately taken limits in their control p
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rameters, onto familiar processes such as ordinary cont
ous diffusion~the Wiener process! and random walks, while
for more typical values of these parameters they are abl
account for finite correlation times and memory effects. It
therefore not surprising that they are widely used in the m
eling of a variety of processes, from telecommunications~the
random telegraph signal! to dipersion in porous media. An
additional motivation is the possibility of accounting for th
discreteness and non-Gaussian character of the noise so
features that are often overlooked in passing to the fam
limit of Gaussian white noise. Finally, while some work h
been reported on the role of time-dependent control par
eters in stochastic dynamical systems forced by white no
@12–14#, to our knowledge no such studies have been und
taken in the presence of dichotomous-type noise.

In what follows, we first consider the simplest case
dichotomous diffusion. The dynamics of the first two m
ments and the level crossings are analyzed in Sec. II and
III, respectively, the relevant control parameter being
switching ratel between the two levels of the noise. Th
case of a more general dichotomous flow, including an ad
tional drift term, is considered in Sec. IV. Section V is d
voted to the extension of some of the results to the c
where the system is forced by a multilevel, discrete, ex
nentially correlated noise. Our main conclusions are sum
rized in Sec. VI. While we have focused in this work on t
switching rate as the time-dependent control parameter
principle other such parameters could also be considere
for instance, a systematic time dependence of the level
the noise, different time dependences of the rates of swi
ing between these, and so on.

II. DICHOTOMOUS DIFFUSION: MEAN AND VARIANCE

A. Moment equations

Dichotomous diffusion is a stochastic process continu
in time ~t! and state space (x), described by the evolution
equation

of
©2002 The American Physical Society09-1
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ẋ5j~ t !, ~1!

where, to avoid inessential complications, we takej(t) to be
a symmetric dichotomous noise: a Markov process switch
between the levels1c and2c at a mean transition ratel,
which will be allowed to vary in a deterministic manner wi
time. One can write down a master equation governing
probability density ofx, by realizing that Eq.~1! describes
the motion of a random walker on the real line moving
constant speedc, with instantaneous reversals of the dire
tion of motion at random instants. This leads to

]P1

]t
1c

]P1

]x
5l~ t !~P22P1!

and

]P2

]t
2c

]P2

]x
5l~ t !~P12P2!, ~2!

P1(x,t) and P2(x,t) being the probability densities whe
the motion is in the sense of increasingx and decreasingx,
respectively. The total probability density for the proce
x(t) is clearlyP(x,t)5P1(x,t)1P2(x,t). Introducing also
the ‘‘excess’’ densityQ5P12P2 , Eqs.~2! transform to

]P

]t
1c

]Q

]x
50 and

]Q

]t
1c

]P

]x
522l~ t !Q. ~3!

EliminatingQ from these two relations, one obtains a clos
equation forP, namely,

]2P

]t2
12l~ t !

]P

]t
2c2

]2P

]x2
50. ~4!

For definiteness, throughout this work~except where speci
fied otherwise! we shall impose initial conditions corre
sponding to a walker initially located atx5x0 and moving in
the direction of increasingx @i.e., j(0)51c#, so that

P~x,0!5d~x2x0! and @]P/]t# t5052cd8~x2x0!.
~5!

An incidental advantage of these asymmetric initial con
tions is that one can now clearly see the extent to which
memory of the initial state is retained in the asymptotic e
pressions for various quantities, an aspect which is obsc
if we choose, say, symmetric initial conditions such
P(x,0)5d(x), Ṗ(x,0)50.

Multiplying Eq. ~4! in succession byx andx2, integrating
over x, and using no-flux boundary conditions atx56`,
one finds the following equations for the momentsm1
5^x(t)& andm25^x2(t)&:

d2m1

dt2
12l~ t !

dm1

dt
50, ~6!

and
05110
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d2m2

dt2
12l~ t !

dm2

dt
22c250. ~7!

The initial conditions satisfied by these moments follo
from those in Eq.~5!, and are given by

m1~0!5x0 , ṁ1~0!5c,

m2~0!5x0
2 , ṁ2~0!52cx0 . ~8!

Clearly, the behavior of the probability density and its m
ments depends crucially on the control parameterl(t). We
shall be interested in situations in whichl(t) increases or
decreases monotonically with time@Eqs. ~15! and ~25! be-
low#, and in comparing these with the ‘‘reference case’’
constantl. Figure 1 depicts typical realizations of the d
chotomous diffusion process in these three situations,
gives a very preliminary idea of what one might expect.
more quantitative analysis is carried out in the subsecti
that follow.

B. Time-independentl

For a constant value ofl, Eqs. ~6! and ~7! can be inte-
grated in a straightforward manner. The solutions obtain
for m1(t) andm2(t) subject to the initial conditions~8! are

m1~ t !5x01
c

2l
~12e22lt! ~9!

and

FIG. 1. Typical time evolution of a dichotomous diffusion pro
cess@Eq. ~1!#, with l5l01et, e50 ~full line!, e50.05 ~dashed
line!, andl5l0(11t/t)21 ~dotted line!. Parameter valuesc5l0

5t51, and initial conditionsx050,j051c. The units ofx andt in
this figure and in the subsequent ones are fixed by the choic
parameter valuesc51 andl051.
9-2
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m2~ t !5x0
21

c2t

l
1

c

l S x02
c

2l D ~12e22lt!. ~10!

The mean displacement saturates tox01c/2l, the specific
value reflecting the initial conditions chosen~in both position
and velocity! and the fact that there is no stable drift term
Eq. ~1!. In contrast, the second moment exhibits, after a tr
sient period of the order of (2l)21, diffusive behavior—a
consequence, ultimately, of the central limit theorem—w
an effective diffusion coefficient equal toc2/2l. This can be
seen more clearly from the expression for the variancedm2
5^x2&2^x(t)&2, which is

dm2~ t !5
c2

2l2 F2lt2~12e22lt!2
1

2
~12e22lt!2G .

~11!

This is also consistent with the well-known fact that dicho
mous diffusion reduces to the usual diffusion~Wiener! pro-
cess in the limit in which bothc andl tend to infinity such
that c2/l remains finite, with a diffusion constant that
given precisely byD5 limc2/(2l).

C. Time-dependentl

Equations~6! and ~7! can again be integrated subject
the initial conditions~8!. We find

m1~ t !5x01cE
0

t

dt8e22*0
t8l(t)dt ~12!

and

m2~ t !5x0
212cx0E

0

t

dt8e22*0
t8l(t)dt

12c2E
0

t

dt8e22*0
t8l(t)dtE

0

t8
dt9e2*0

t9l(t)dt. ~13!

Correspondingly, the variance is given by

dm2~ t !52c2F E
0

t

dt8e22*0
t8l(t)dtE

0

t8
dt9e2*0

t9l(t)dt

2
1

2 S E
0

t

dt8e22*0
t8l(t)dtD 2G . ~14!

1. l linearly increasing with time

We call such a variation a ‘‘ramp,’’ and write it as

l~ t !5l0S 11
t

t D[l01et ~15!

where e expresses the increase of the switching rate w
time. The integrals in Eq.~12! can be evaluated in close
form to yield
05110
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m1~ t !5x01
c

2
Ap

e
el0

2/e

3FerfS tAe1
l0

Ae
D 2erfS l0

Ae
D G . ~16!

We see that, despite the continuous increase ofl(t), the first
moment attains a limiting value. An asymptotic evaluati
for t@1/Ae leads to

m1~ t !'x01
c

2l0
2

ce

4l0
3

1•••. ~17!

Therefore, to leading order ine, the effect of the ramp is to
depressthe value ofm1 in this asymptotic regime: in a sens
increasingly frequent switching between the two noise lev
tends to ‘‘stabilize’’ the mean—a result that could at fir
sight seem to be counterintuitive. By stabilization we me
here the fact that the drift of the mean fromx0 to x0
1c/(2l0) is at least partially arrested, for the asympto
value of the second term in Eq.~16! is still less thanc/(2l0).

As the integrals in Eq.~13! for the second moment canno
be carried out in closed form in the case of a ramp@Eq. ~15!#,
we turn to the numerical simulation of dichotomous diff
sion. In doing so, care must be taken to properly incorpor
the time dependence ofl(t) in the evolution of the stochas
tic trajectory of the noisej(t), paying particular attention to
its nonstationary nature. Now, the probability that the no
remains at its initial level until timet ~i.e., the ‘‘lifetime’’
distribution for either state of the noise! is given by

p~ t !5expS 2E
0

t

l~ t8!dt8D , ~18!

while the probability of a given transition history is

p~ t1 ,t2 , . . . !5e2*
0

t1l(t8)dt8l~ t1!dt1

3e2*
t1

t2l(t8)dt8l~ t2!dt2•••. ~19!

If one starts in the statej(0)51c, the probability that
j(t)56c at any subsequent timet is then given by

P6~ t !5 1
2 ~16e22*0

t l(t8)dt8!. ~20!

With this background, one can simulate the dichotomo
noise process in the presence of a ramp by suitably gen
izing the method developed by Gillespie@15# in the case of
exponentially distributed lifetimes@i.e., l5const in Eq.
~18!#. The salient results of the simulation, as far as the fi
momentm1(t) and the variancedm2(t) are concerned, are
summarized in Fig. 2.~Here, and in all the numerical result
in Secs. II–IV, the value ofl0 has been set equal to unity.! In
Fig. 2~a! we see, in agreement with the analytic result of E
~16!, that m1 indeed approaches an asymptotic level, wh
moreover decreases with increasinge. Figure 2~b! depicts
the behavior of the variance. The main conclusion is that
increase of the variance with time is depressed ase in-
9-3
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creases. This illustrates further the stabilization of the sys
under the influence of the ramp, at least as far as the beha
of the moments is concerned.

To derive more quantitative results on the behavior of
second moment, we consider the limit of smalle and resort
to multiple time scale analysis~or an ‘‘adiabatic approxima-
tion’’ !. One introduces a slow time variable

t̃ 5l01et ~21!

@which is essentiallyl(t) itself for the simple ramp#, to-
gether with the expansion

FIG. 2. First moment~a! and second moment~b! for dichoto-
mous diffusion obtained numerically from Eq.~1! after an averag-
ing over 106 realizations and with different values of the ram
parametere @Eq. ~15!#. Parameter values and initial conditions as
Fig. 1.
05110
m
ior

e

m2~ t̃ !5e21m2
(0)~ t̃ !1•••. ~22!

Equation~7! then yields, to dominant order,

2 t̃
dm2

(0)

d t̃
22c250, ~23!

which can be integrated in a straightforward manner to yie
for sufficiently long times,

m2~ t !'~c2/e! ln~l01et !, ~24!

up to an additive constant. We conclude that the diffus
behavior characteristic of the process whenl is fixed is now
replaced by asubdiffusiveone. In Figs. 3~a! and 3~b! we
show the fit, by the formula of Eq.~24!, to the data of Fig.
2~b! corresponding toe50.1 ande50.5. The agreement is
excellent, confirming the validity of our asymptotic analys

2. l decreasing with time

We express this as

l~ t !5l0S 11
t

t D 21

. ~25!

Equation~12! now yields

m1~ t !5x01
c t

~2l0t21! F12S t

t1t D 2l0t21G . ~26!

Two qualitatively different cases can be distinguished.
~i! If 2l0t21.0, Eq. ~26! leads to a well-defined

asymptotic limit for the first moment, which we may write a

m1~`!5x01
c

2l0
S 2l0t

2l0t21D . ~27!

Comparison with Eqs.~9! and ~17! shows thatm1 is now
enhancedrelative to its value whenl is constant, in contras
to the case of the ramp.

~ii ! When 2l0t21,0, the first moment becomes un
bounded ast→`, according to

m1~ t !'S ct

122l0t D t122l0t. ~28!

These two regimes are separated by the borderline v
2l0t2150, at which

m1~ t !5x01ct lnS t1t

t D , ~29!

which diverges logarithmically ast→`. The destabilization
of the system induced by the steady decrease ofl is now
manifest.

For the variance, one obtains from Eqs.~14! and~25! the
following exact expression~for 2l0t21.0 as well as
2l0t21,0):
9-4
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dm2~ t !5
c2t~ t12t!

~2l0t11!

1
2c2t2

~4l0
2t221!

@~ t/t11!122l0t21#

2
c2t2

~2l0t21!2
@~ t/t11!122l0t21#2. ~30!

The dominant dependence ast→` is, therefore,

dm2~ t !'
c2t2

2l0t11
, ~31!

FIG. 3. Time evolution fort@e21/2 of the second momen
~empty circles! as obtained numerically from Eq.~1! with ~a! e
50.1 and~b! e50.5. The full line depicts the asymptotic analytic
expression Eq.~24!. Parameter values as in Fig. 2.
05110
implying that the displacement from the mean exhibitsbal-
listic behavior—an additional signature of the weakening
the stability of the system induced by the sytematic decre
of l(t) with time.

III. LEVEL CROSSINGS IN DICHOTOMOUS DIFFUSION

A. General formulas

We now turn to the statistics of level crossings in dicho
mous diffusion. As a more ‘‘local’’ probe, this is a valuab
supplement to the study of the moments in obtaining inf
mation on the general stability of the system.

The random variablex(t) defined by Eq.~1! is a continu-
ous process with a bounded velocity. For such a proces
can be shown@4# that the mean value of the numbe
N(xth ;0,T) of crossings of any specified level or thresho
x5xth , in the time interval betweent50 andt5T, is given
by

^N~xth ;0,T!&5E
0

T

dtE
2`

`

dẋuẋuP~xth ,ẋ,t !, ~32!

whereP(x,ẋ,t) is the joint probability density of the system
in phase space. This formula counts both upcrossi
@N↑(xth ;0,T)# and downcrossings@N↓(xth ;0,T)# of xth ; for
the mean value of the former~latter! alone, the lower~upper!
limit of integration overẋ in Eq. ~32! must be replaced by 0
The mean squared value ofN(xth ;0,T) involves the two-
time probability density in phase space, and is given by

^N2~xth ;0,T!&5E
0

T

dt1E
0

T

dt2E
2`

`

dẋ1E
2`

`

dẋ2

3uẋ1uuẋ2uP~xth ,ẋ1 ,t1 ;xth ,ẋ2 ,t2!.

~33!

These general formulas simplify somewhat in the case
dichotomous diffusion. As the speeduẋu is always equal toc
in this instance, we get

^N~xth ;0,T!&5cE
0

T

dtP~xth ,t !, ~34!

whereP(x,t)5P1(x,t)1P2(x,t) as already defined. Simi
larly,

^N2~xth ;0,T!&5c2E
0

T

dt1E
0

T

dt2P~xth ,t1 ;xth ,t2!.

~35!

Initial conditions must of course be specified. We shall u
the same ones as before, i.e., those corresponding to an
tial positionx0 and motion in the direction of increasingx, as
in Eq. ~5!.

B. Time-independentl

To illustrate the essential features of level crossing, it s
fices to consider the casex050, xth50. ~The modifica-
9-5
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tions introduced whenx0 andxth are arbitrary are discusse
subsequently.! Using the known solutions~see, e.g.,@10#! for
P6(x,t) in the case of dichotomous diffusion, we get~for the
specific initial conditions we have assumed!

^N~0;0,T!&5
1

2E0

lT

e2u@ I 0~u!1I 1~u!#du, ~36!

whereI n is the modified Bessel function of ordern. The two
terms in the integrand represent, respectively, the contr
tions from downcrossings and upcrossings of the zero le

In order to computêN2&, we need the two-time probabil
ity density P(x1 ,t1 ;x2 ,t2). This can be determined in th
present instance by recalling that thepair (x,ẋ) constitutes a
two-dimensional Markov process. Using this fact, as well
the solutions@10# for dichotomic diffusion for all four prob-
ability densitiesP(x,j,tux0 ,j0 ,t0) where j56c and j05
6c, we obtain from Eq.~35! after some simplification the
result

^N2~0;0,T!&5
1

2E0

lT

du1e2u1E
0

u1
du2

3@ I 0~u12u2!1I 1~u12u2!#

3@ I 0~u2!1I 1~u2!#. ~37!

Exploiting the fact that this expression is in the form of
convolution, one of the integrations in Eq.~37! can be car-
ried out. We then get

^N2~0;0,T!&5lT2E
0

lT

due2u@ I 0~u!1I 1~u!#

5lT22^N~0;0,T!&. ~38!

When T is very large~i.e., lT@1), Eq. ~36! yields, for
the asymptotic behavior of the mean number of zero cro
ings, the expression

^N~0;0,T!&5S 2lT

p D 1/2F11
1

8lT
1O„~lT!22

…G . ~39!

Similarly, for the variance of this number we find th
asymptotic expansion

^dN2~0;0,T!&5S 12
2

p DlT2S 8lT

p D 1/2

2
2

p
1O„~lT!21/2

…. ~40!

Hence the relative fluctuation in the number of zero cro
ings is, forlT@1,

^dN2~0;0,T!&1/2

^N~0;0,T!&
5S p

2
21D 1/2

2S 12
2

p D 21/2

~lT!21/21•••. ~41!
05110
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Thus level crossings in dichotomous diffusion display stro
fluctuations, as the standard deviation is comparable to
mean value. Moreover, aslT→`, their ratio tends to an
absolute constant (p/221)1/2. All these results are fully con-
firmed by numerical simulations. Figure 4 shows some of
relevant features in this regard. In particular, the full line
Fig. 4~c! represents the exact analytic expression for the r
tive fluctuation inN, while the crosses represent the resu
of simulation.

We now comment briefly on level crossings in the case
arbitrary threshold valuexth . Starting~for generality! at an
arbitrary initial positionx0 as well, we find that the main
effect is a time delayTd5uxth2x0u/c after which level
crossings commence. Forxth.x0, we get~when t.Td)

^N~xth ;0,T!&

5e2lTd1
1

2ElTd

lT

e2uH I 0~w!1S u1lTd

u2lTd
D 1/2

I 1~w!J du,

~42!

where w(u,xth ,x0)5(u22l2Td
2)1/2. For xth,x0 the first

term on the right (e2lTd) is absent, and the prefactor ofI 1 in
the integrand is@(u2lTd)/(u1lTd)#1/2.

C. Time-dependentl

Now consider the effect of a systematic ramplike increa
of the switching ratel(t) upon level crossings in dichoto
mous diffusion. As analytic expressions for the probabil
densities concerned are not available in this case, nume
simulations are essential. Figures 4~a!–4~c! summarize the
salient features forl(t)5l01et with l051 ande50.001.
For ready comparison, the values corresponding toe50
have also been shown. As can be seen, the number of
crossings in a given time interval, and its variance, are n
enhanced. A qualitative insight into the new law governi
the crossings, at least at the level of the mean value, ma
gained by appealing once again to the adiabatic approxi
tion now applied at the level of Eq.~4!. To the dominant
order, this leads to a diffusion equation forP(x,t) with a
time-dependent diffusion coefficient, admitting the solutio

P~x,t !'~ ln t !21/2exp~2x2/4 ln t !. ~43!

Inserting this form into Eq.~34! yields the long time behav
ior

^N~0;0,T!&'T~ ln T!21/2. ~44!

The full line joining the data points for the case of the ram
in Fig. 4~a! is a fit to the data provided by the adiabat
approximation above. Once again, the excellent fit corro
rates the accuracy of the asymptotic analysis.
9-6
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FIG. 4. Mean~a!, variance~b!, and relative fluctuation~c! of the
number of zero crossings for dichotomous diffusion in a time int
val from t50 to t52000 time units sampled every 100 time uni
as obtained from Eq.~1! with e50 ~crosses! ande50.001~empty
circles!. The full lines in ~a! and ~c! represent the asymptotic ana
lytical results, Eqs.~44! and~41!, respectively. Parameter values
in Fig. 2, but averaging has been performed over 20 000 rea
tions, with initial conditions randomly chosen betweenj(0)51c
andj(0)52c.
05110
IV. GENERAL DICHOTOMOUS FLOW

A. Preliminaries

In this section we consider the case of a general dicho
mous flow, in which Eq.~1! is replaced by the stochasti
differential equation

ẋ5 f ~x!1g~x!j~ t !. ~45!

The master equations forP1(x,t) andP2(x,t) now read

]P1

]t
1

]~ f 1P1!

]x
5l~ t !~P22P1!

and

]P2

]t
1

]~ f 2P2!

]x
5l~ t !~P12P2!, ~46!

where

f 1~x!5 f ~x!1cg~x!, f 2~x!5 f ~x!2cg~x!. ~47!

Even in the standard case of a constant switching ratel, a
partial differential equation of finite order can be deriv
from Eqs. ~46! for the total densityP5P11P2 only for
certain choices@16,17# of f (x) andg(x). However, the cor-
responding stationary density exists~for constantl) under
fairly general conditions in the ‘‘region of stability’’ where
c2g22 f 2.0 or f 1 f 2,0, i.e., where the flows in the two
states of the noise are oppositely directed. This densit
given by @8#

Pst~x!56
Ncg

c2g22 f 2
expS 2lE f dx

c2g22 f 2D ~48!

where the 1 (2) sign applies if f 1.0,f 2,0 ( f 1

,0,f 2.0). N is the normalization constant. We shall find
useful to rewrite Eq.~48! in the form @17#

Pst~x!5
N
2 S 1

u f 1u
1

1

u f 2u DexpS 2lE dx

f 1
D

3expS 2lE dx

f 2
D , ~49!

where the two terms in the sum correspond toP1
st(x) and

P2
st(x), respectively. This separation is necessary, for

stance, in deriving the level-crossing formula to be presen
below, in Eq.~63!.

Our primary interest here is in the effects of a tim
dependent switching ratel(t), and therefore we shall mainly
focus on a nontrivial flow that is, nevertheless, tractable. T
is the case of a linear drift, given byf (x)52gx and g(x)
51, i.e.,

ẋ52gx1j~ t !, ~50!

where g.0. As the noisej(t) switches between its two
levels, there is an alternation between flows with stable c

-

a-
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cal points atc/g and2c/g, respectively. In this caseP(x,t)
satisfies a second order equation, which is most convenie
written for our present purposes in the form

]2P

]t2
52g

]

]x
x

]P

]t
2@2l~ t !2g#

]P

]t
1c2

]2P

]x2

2g2
]

]x
x

]~xP!

]x
1g@2l~ t !2g#

]~xP!

]x
. ~51!

In the special case of a constantl, the time-dependent solu
tion P(x,t) of Eq. ~51! is in fact known in closed form@16#,
and is expressible in terms of hypergeometric functions. T
corresponding normalized stationary~asymptotic! density
Pst(x) has a support in the interval bounded by the criti
points6c/g, where it is given by@8#

Pst~x!5
gG„~l12g!/2g…

Apc2112l/gG~l/g!
~c22g2x2!211l/g. ~52!

We shall therefore takex0 to lie in this interval. Further, for
our present purposes, in particular, for deriving and ana
ing the equations satisfied by the moments ofx, we shall also
require that the first derivativedPst/dx be bounded at the
end points inx, which requiresl>2g. Hence we restrict
ourselves to this range. The changes that arise for sm
values ofl are of interest in their own right@for instance, it
is clear from Eq.~52! that there is a qualitative differenc
@16# in the shape of this density between the casesl.g and
l,g#, but we do not digress to consider this aspect here

B. Moment equations

From Eq.~51!, we find that the momentsm15^x(t)& and
m25^x2(t)& satisfy the equations

d2m1

dt2
1@2l~ t !1g#

dm1

dt
12gl~ t !m150 ~53!

and

d2m2

dt2
1@2l~ t !13g#

dm2

dt
12g@2l~ t !1g#m252c2.

~54!

The initial conditions thatm1 and m2 now satisfy follow
from the initial conditions

P~x,0!5d~x2x0!

and

@]P/]t# t5052
]

]x
@~c2gx!d~x2x0!#, ~55!

and are given by

m1~0!5x0 , ṁ1~0!5c2gx0 ,
05110
tly

e
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m2~0!5x0
2 , ṁ2~0!52x0~c2gx0!. ~56!

Again considering first the case of a time-independentl, we
find the solutions

m1~ t !5x0e2gt1
c

~2l2g!
~e2gt2e22lt! ~57!

and

m2~ t !5
c2

g~2l1g!
1H x0

21
c~2gx02c!

g~2l2g! J e22gt

1
2c

~2l2g! H c

~2l1g!
2x0J e2(2l1g)t. ~58!

These solutions are to be compared with the expression
Eqs. ~9! and ~10! which obtain in the case of free dichoto
mous diffusion, to which they reduce in the limitg→0. Ow-
ing to the presence of a stable drift, the moments now l
their dependence on the initial conditions ast→`. The mean
valuem1 rises above its initial valuex0 for small t @because
of the choicej(0)51c for the initial noise level#, and sub-
sequently falls back to zero asymptotically. The variance
longer displays diffusive behavior, but instead approache
constant,c2/g(2l1g). This is consistent with the value ob
tained directly fromPst(x) as given by Eq.~52!.

Whenl(t) increases on a ramp, the adiabatic approxim
tion implied by the scaling in Eq.~21! may again be em-
ployed to draw conclusions regarding the asymptotic beh
ior of the moments. This yields, to leading order,

m1~ t !'0, m2~ t !'
c2

g@2~l01et !1g#
. ~59!

Figures 5~a! and 5~b! show, respectively, the behavior of th
mean and the variance for a set of values of the ramp par
eter e ranging from 0 to 0.5. Herel0 and c have been se
equal to unity, whileg50.25 ~so thatl.2g). A more de-
tailed look at the variance induced by the ramp in the lo
time regime is provided by Fig. 5~c!, where the full lines
correspond to a fit by the expression in the second of E
~59!. The agreement with the results of simulations is, aga
quite satisfactory.

C. Level crossings

1. General formulas

Starting with the general formula of Eq.~32!, an expres-
sion may be derived for the mean number of threshold cro
ings for the arbitrary dichotomous flow of Eq.~45! as fol-
lows. Using the flow equation to eliminate the veloci
variable in favor ofj, we have

P~x,ẋ,t !5^d~ ẋ2 f ~x!2g~x!j!& ~60!

where the averaging is over the sample space ofj. This leads
to
9-8
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FIG. 5. As in Fig. 2, but in the presence of a linear drift ter
@Eq. ~50!# and for different values of the ramp parametere. In ~c!
the numerically obtained values of the second moment~empty
circles, crosses, and triangles! are compared with the asymptot
analytical result~full line!, Eq. ~59!. Parameter values as in Fig. 2
with g50.25; number of realizations 50 000.
05110
P~x,ẋ,t !5d„ẋ2 f 1~x!…P1~x,t !

1d„ẋ2 f 2~x!…P2~x,t !. ~61!

Formal expressions for the mean number of upcrossings
downcrossings of a given levelxth can now be written down.
For the mean total number of crossings in the time inter
from 0 to T, we obtain the simple formula

^N~xth ;0,T!&5E
0

T

dt@ u f 1~xth!uP1~xth ,t !

1u f 2~xth!uP2~xth ,t !#. ~62!

The integrand in Eq.~62! can be identified with an instanta
neous mean rater (xth ,t) of crossings of the level concerned
If a stationary distribution exists, as in Eq.~48! or Eq. ~49!
above, then the mean rate of crossings asymptotically
proaches the stationary value

r st~xth ,t !5N expS 2lExth f dx

c2g22 f 2D . ~63!

2. Level crossings in linear dichotomous flow

Turning once again to the linear dichotomous flow of E
~50!, the known solutions forP6(x,t) may be used in Eq.
~62! to write down^N(xth ;0,T)& explicitly, in principle. As
the solutionsP6(x,t) involve very lengthy expressions, w
do not do this here.

For the case of a constantl, the asymptotic value of the
mean rate of crossings can be written down from Eq.~63!.
We find

r st~xth ,t !5
gG„~l12g!/2g…

Apc2l/gG~l/g!
~c22g2xth

2 !l/g. ~64!

For zero crossings, this simplifies further to

r st~0,t !5
gG„~l12g!/2g…

ApG~l/g!
. ~65!

For l(t) varying on the ramp, analytic expressions f
P6(x,t) are not available. However, we may use the sa
adiabatic approximation as in the preceding sections to ar
at the leading asymptotic behavior of various quantities.
thus find, for sufficiently larget,

P~x,t !'
gG„~l~ t !12g!/2g…

Apc2112l(t)/gG„l~ t !/g…

3~c22g2x2!211l(t)/g, ~66!

wherel(t)5l01et. This is used in the analysis of the nu
merical results presented in Figs. 6 and 7, wherel051,c
51, andg50.25, as in the preceding subsection.

In numerical simulations, it is more convenient to wo
with the mean ^N(xth ;0,T)& itself, rather than the rate
r (xth ,t). Figure 6~a! compares the mean number of ze
9-9
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crossings up to timet for e50 ande50.001, respectively,
while Fig. 6~b! does the same for the corresponding va
ances. Although there appear to be significant differen
between the two cases, the relative fluctuat
^dN2(0;0,t)&1/2/^N(0;0,t)& is practically the same in both
cases, as demonstrated in Fig. 6~c!. Figures 7~a!–7~c! are the
counterparts of Figs. 6~a!–6~c! for a much larger value ofe,
namely,e50.1. The full line running along the data poin
corresponding to the ramp in both Fig. 6~a! and Fig. 7~a! is a
fit to the data using the adiabatic approximation, wh
yields

^N~0;0,t !&'
g

Ap
E

0

t

dt8
G„~l01et812g!/2g…

G„~l01et8!/g…
. ~67!

Once again, we see that the fit is very good indeed.

V. THE CASE OF MULTILEVEL NOISE

A. The model

Finally, we extend some of the results obtained in
foregoing to the case of a multilevel generalization of
chotomous noise, but one which preserves nevertheless
features of discreteness, non-Gaussianity, and a finite co
lation time that the latter possesses. Our motivation is to
an idea of the role played by the dimensionality of the st
space of the discrete noise. In practical modeling, one m
well have a discretesetof values for the random forcing tha
comprises more than just two levels.

The specific model we shall consider is a generalizat
of dichotomous diffusion, given by the flowẋ5j(t), where
the velocityj(t) is a q-state Markov process that takes t
valuesc1 , . . . ,cq , andq is a positive integer>2. As before,
the jumps inj(t) are assumed to occur at random instants
time, at a mean transition ratel ~which is time dependent in
general!. For simplicity, we also assume that from any lev
ci of the noise, a jump may occur toany other levelcj ( j
Þ i ) with equal probability@5(q21)21#. This assumption
may be relaxed or modified, to lead to various oth
models—for instance, transitions restricted toci→ci 61 lead
to a generalized model of Taylor dispersion@11#, and so on.

Denoting byPi(t) the probability thatj(t)5ci , the sta-
tistics of the noise is given by the master equation

Ṗi~ t !52~q21!l~ t !Pi~ t !1l~ t !(
j 5” i

q

Pj~ t !. ~68!

For an arbitrary initial levelj(0)5ck of the noise, the solu-
tion to Eq.~68! is given by

Pk~ t !5q211~12q21!e2q*0
t l(t8)dt8

and

Pi~ t !5q21~12e2q*0
t l(t8)dt8!, i 5” k. ~69!

This is a generalization of Eq.~20!. The lifetime distribution
of any state of the noise is now
05110
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FIG. 6. As in Fig. 4, but in the presence of a linear drift, E
~50!. The full line in ~a! represents the analytical result, Eq.~67!.
Parameter values as in Fig. 5. Number of realizations 10 000; in
conditionsx050, j051c.
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FIG. 7. As in Fig. 6, but withe50 ~crosses! ande50.1 ~empty
circles!. Number of realizations 105.
05110
p~ t !5expS 2~q21!E
0

t

l~ t8!dt8D , ~70!

where the extra factor of (q21) in the exponent must be
noted.

The master equation for the probability densiti
$Pi(x,t)% of the diffusion process reads

]

]t
Pi~x,t !1ci

]

]x
Pi~x,t !52~q21!l~ t !Pi~x,t !

1l~ t !(
j 5” i

q

Pj~x,t !. ~71!

For the first momentm15^x(t)& this yields the equation

dm1

dt
5(

i 51

q

ci Pi~ t !, ~72!

wherePi(t) is given by Eq.~69!. With the initial condition
m1(0)5x0, the solution of Eq.~72! is

m1~ t !5x01^c&t1~ck2^c&!E
0

t

dt8e2q*0
t8l(t)dt, ~73!

where ^c&5q21(1
qci is the mean drift velocity. We shal

henceforth takêc&50, to eliminate this trivial drift.
The calculation of the second moment is more elabor

in this general case, since the equation satisfied bym2(t) is

dm2

dt
52(

i 51

q

cim1i~ t !, ~74!

where m1i(t) is the ‘‘partial’’ first moment *xPi(x,t)dx.
These quantities have therefore to be determined first.
formal solution form2(t) that finally results is quite lengthy
and we do not give it here.

B. Time-independentl

For constantl, we obtain

m1~ t !5x01
ck

ql
~12e2qlt!, ~75!

which is the generalization of Eq.~9!. ~We recall thatck is
the initial velocity state.! As t→`, this saturates to the valu
x01ck /(ql). Again, this is corroborated by numerical sim
lation. Figure 8~a! shows the behavior of the mean in th
caseq54,ci5$22,21,11,12%, andck51. The ratel0 has
been set equal to13 in order to compensate for the facto
(q21) in the exponent in Eq.~70!, thereby facilitating ready
comparison of numerical values with those obtained in
preceding sections in the case of dichotomous diffusion. T
curve corresponding toe50 in Fig. 8~a! saturates to a value
0.75, in agreement with the theoretical prediction.

The variance ofx in the case of a constantl is found to
be
9-11
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dm2~ t !5
2^c2&

ql
t2

~4^c2&2ck
2!

~ql!2
1

4^c2&

~ql!2
e2qlt

1
2~^c2&2ck

2!

ql
te2qlt2

ck
2

~ql!2
e22qlt, ~76!

where ^c2&5q21( ici
2 . The effective diffusion constant in

this generalization of dichotomous diffusion is thereforeD
5^c2&/(ql), in complete agreement with the results
simulation, as seen from the curve corresponding toe50 in
Fig. 8~b!. If ^c&5” 0, the diffusion constant in this model i
(^c2&2^c&2)/(ql).

FIG. 8. As in Fig. 2, but for a four-level noise (q54), with ci

5$22,21,11,12% andl051/3.
05110
C. l increasing on a ramp

For l increasing with time on a ramp as in Eq.~15!, we
find

m1~ t !5x01ckA p

2qe
eql0

2/2e

3FerfS tAqe

2
1l0A q

2e D 2erfS l0A q

2e D G .
~77!

This is the generalization of Eq.~16! to our q-state model.
For t@1/Ae, we now get

m1~ t !'x01
ck

2l0
2

cke

q2l0
3
•••. ~78!

This gives an idea of the relative roles played bye andq in
the stabilization of the mean~in the sense already explaine
in Sec. II C! under the action of the ramp. The numeric
results are again in agreement with the theoretical pre
tions, as seen in Fig. 8~a!. Finally, in Fig. 8~b! for the vari-
ance, the curves corresponding to nonzero values ofe, now
drawn entirely on the basis of the numerical simulation,
dicate the expected trend toward subdiffusive behavior
asymptotically long times.

Regarding level-crossing statistics in the multilevel mod
under discussion, we note that a formal expression for
mean number of crossings of a thresholdxth may easily be
written down as a generalization of that obtained in the
chotomous case. In fact, for the multilevelflow given by ẋ
5 f (x)1g(x)j(t) wherej is the q-state Markov noise de
fined in this section, the formula in Eq.~62! generalizes di-
rectly to

^N~xth ;0,T!&5E
0

T

dt(
i 51

q

u f i~xth!uPi~xth ,t !, ~79!

wheref i(x)5 f (x)1cig(x). However, we do not pursue thi
aspect any further here, as no analytic solution forP(x,t) ~in
the case of constantl) is available as a reference and f
comparison with the results of simulation with constant
well as time-varyingl.

VI. CONCLUSIONS

The principal result of this work has been to show tha
systematic variation in time of a control parameter, in a d
namical system driven by dichotomous or multilevel nois
may introducequalitativechanges in its statistical propertie
relative to the unforced case. These changes already ap
in the case where the deterministic dynamics in the abse
of noise is very simple. These may involve, for instance,
switching from diffusive to subdiffusive, or, on the contrar
ballistic behavior of the variance; or the enhancement of
crossings of some prescribed threshold by the stochastic
jectory.
9-12
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Our analysis of the level-crossing dynamics has also
vealed some rather unexpected features that are alread
hibited in the case of a fixed control parameter. It has in f
been shown that the fluctuations of the number of cross
about its mean value are comparable to the mean itself.
property should have important repercussions in the inter
tation and prediction of extremes, especially in connect
with their next likely recurrence, a problem of the utmo
importance in environmental science and engineering.

The analysis carried out in the present paper can be
tended in several directions. One such would be to the c
of nonlinear dichotomous flows, particularly flows that adm
instabilities and multiple states in the deterministic limit. T
interference of these instabilities with the stabilizing or d
stabilizing trends induced by the time variation of the cont
parameter could then lead to different modes of behavior
would be worth exploring. Another possible extension is
investigation of the role of an external periodic forcing s
perimposed on the dichotomous noise. The main ques
here is the possibility of an enhancement of the respons
the system via a mechanism of the stochastic resonance
nd

d

ss
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Finally, the investigation of dynamical systems forced
other forms of noise and subject to systematic time variat
of their control parameters could reveal whether ‘‘univers
ity classes’’ can be identified, as far as the moment and le
crossing dynamics are concerned. In particular, the pre
roles of the discreteness, the non-Gaussian character, an
correlation time of the noise would be worth clarifying
greater detail.

From the standpoint of applications, we believe that
results reported here provide useful tools for approach
prediction-related problems of considerable concern in
context of atmospheric science and also economics an
nance, among others.

ACKNOWLEDGMENTS

This work was supported in part by the Interunivers
Attraction Poles Program of the Belgian Federal Governm
and the Belgian National Fund for Scientific Research. V
acknowledges the warm hospitality of the Universite´ Libre
de Bruxelles.
n

@1# G. Nicolis and I. Prigogine,Self-Organization in Non-
Equilibrium Systems~Wiley, New York, 1977!.

@2# N. G. Van Kampen,Stochastic Processes in Physics a
Chemistry~North-Holland, Amsterdam, 1981!.

@3# E. J. Gumbel,Statistics of Extremes~Columbia University
Press, New York, 1958!.

@4# T. T. Soong,Random Differential Equations in Science an
Engineering~Academic, New York, 1973!.

@5# M. R. Leadbetter, G. Lindgren, and H. Rootzen,Extremes and
Related Properties of Random Sequences and Proce
~Springer-Verlag, New York, 1983!.

@6# C. Nicolis, Tellus, Ser. A40A, 50 ~1988!.
@7# P. Embrechts, C. Klu¨ppenberg, and T. Mikosch,Modeling Ex-

treme Events for Insurance and Finance~Springer-Verlag,
New York, 1997!.

@8# W. Horsthemke and R. Lefever,Noise Induced Transitions
es

~Springer-Verlag, Berlin, 1984!, Chap. 9.
@9# C. Van den Broeck, J. Stat. Phys.31, 467 ~1983!.

@10# V. Balakrishnan and S. Chaturvedi, Physica A148, 581~1988!.
@11# C. Van den Broeck and R. M. Mazo, J. Chem. Phys.81, 3624

~1984!.
@12# T. Erneux and P. Mandel, SIAM~Soc. Ind. Appl. Math.! J.

Appl. Math. 46, 1 ~1986!.
@13# S. Belestri, M. Ciofini, R. Meucci, F. Arecchi, P. Colet, M. Sa

Miguel, and S. Balle, Phys. Rev. A44, 5894~1991!.
@14# C. Nicolis and G. Nicolis, Phys. Rev. E62, 197 ~2000!.
@15# D. T. Gillespie, Markov Processes~Academic, New York,

1992!.
@16# J. M. Sancho, J. Math. Phys.25, 354 ~1984!.
@17# V. Balakrishnan and C. Van den Broeck, Phys. Rev. E65,

012101~2001!.
9-13


