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Moment evolution and level-crossing statistics in dichotomous and multilevel flows
with time-dependent control parameters
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We study the dynamics of the first two moments and of threshold crossings by the stochastic trajectory in
dichotomous diffusionx= &(t), where&(t) is a dichotomous Markov process. The transition rate of the latter
is regarded as a control parameter and allowed to have specified time variations. The stabilizing or destabiliz-
ing effect of this variation is demonstrated, and qualitative changes in the statistical properties of the system are
shown to occur. The analysis is then extended to linear dichotomous flow, and to a generalization of dichoto-
mous diffusion in whichx is driven by a multilevel Markov noise.
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I. INTRODUCTION rameters, onto familiar processes such as ordinary continu-
ous diffusion(the Wiener processand random walks, while
One of the most useful indicators of the stability of afor more typical values of these parameters they are able to
natural phenomenon is the smallness of the standard devi@ccount for finite correlation times and memory effects. It is
tion of the relevant variabig) (and its higher order analogs therefore not surprising that they are widely used in the mod-
as compared to the meéh,2). Less familiar, although quite €ling of a variety of processes, from telecommunicatidhe
relevant, is the sparseness of crossings by the dynamical tri@ndom telegraph signato dipersion in porous media. An
jectory of levels distinctly different from the medar, more additional motivation is the possibility of accounting for the
significantly, from the most probable valy¢he statistics of discreteness and non-Gaussian character of the noise source,

suchlevel crossingseing in turn intimately related to the :‘_eqttur?séthat are of;gtn ovgrloollzgedl;n pa;]s_lsmg to the firﬂ'“ar
problem ofextreme valuef3—5]. imit of Gaussian white noise. Finally, while some work has

Investigations of moment dynamics and level crossing Olbeen _reported on the role. of time-dependent contro_l param-
. o . eters in stochastic dynamical systems forced by white noise
extreme value statistics are usually limitedstationarydy-

i . . . 12-14, to our knowledge no such studies have been under-
namical systems, i.e., systems that are subjected to fixed co sken in the presence of dichotomous-type noise

trol parameters and possess sufficiently strong ergodic prop- |, '\ hat follows, we first consider the simplest case of
erties. There are, however, compelling reasons for extendingichotomous diffusion. The dynamics of the first two mo-
these investigations to systems forced_ by_ tlme-erenderp,t,entS and the level crossings are analyzed in Sec. Il and Sec.
control parameters. Two particularly significant instancesy|  respectively, the relevant control parameter being the
calling for such an extension are possible changes of trendgyjtching rateN between the two levels of the noise. The
in atmospheric dynamics in connection with anthropogenicase of a more general dichotomous flow, including an addi-
forcings([6], and the dynamics of financial markets in which tional drift term, is considered in Sec. IV. Section V is de-
background information is continuously updated by the outvoted to the extension of some of the results to the case
come of the dynamics itself7]. Other systems in which where the system is forced by a multilevel, discrete, expo-
similar effects come into play are switching phenomena imentially correlated noise. Our main conclusions are summa-
electronic or optical devices, and chemical or biological pro—ized in Sec. VI. While we have focused in this work on the
cesses under real-world environmental conditions. The aingwitching rate as the time-dependent control parameter, in
of the present work is to analyze the role of the time depenprinciple other such parameters could also be considered—
dence of the control parameters on moment evolution angbr instance, a systematic time dependence of the levels of
level-crossing statistics in a class of stochastic dynamicahe noise, different time dependences of the rates of switch-
systems forced by dichotomous no[$4,8—-1Q and a mul-  ing between these, and so on.
tilevel generalization theredfL1].
The principal motivation for focusing on dynamical

sytems of this type is their genericness. They may indeed be&l. DICHOTOMOUS DIFFUSION: MEAN AND VARIANCE
mapped, via appropriately taken limits in their control pa- A. Moment equations

Dichotomous diffusion is a stochastic process continuous
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x=&(1), () x
10 S .

where, to avoid inessential complications, we tgke to be ) K '\
a symmetric dichotomous noise: a Markov process switching AN .
between the levels-c and —c at a mean transition rate, K N
which will be allowed to vary in a deterministic manner with ’
time. One can write down a master equation governing the 5
probability density ofx, by realizing that Eq(1) describes
the motion of a random walker on the real line moving at
constant speed, with instantaneous reversals of the direc-

tion of motion at random instants. This leads to 0
P, P,
TS =\t (P_—P,)
and S
S MO(PL—P) 2
_—C—= — _), L 1 1 1
at 2 ’ 0 10 20 30 40 50

P, (x,t) andP_(xt) being the probability densities when g 1. Typical time evolution of a dichotomous diffusion pro-

the motion is in the sense of increasin@nd decreasing,  cess[Eq. (1)], with A=Ao+et, e=0 (full line), e=0.05 (dashed

respectively. The total probability density for the processjine), and\=xq(1+1t/7)"* (dotted ling. Parameter values=N\,

X(t) is clearly P(x,t) =P, (x,t) + P_(X,t). Introducing also = r=1, and initial conditions,=0,£,= + ¢. The units ofx andt in

the “excess” densityQ=P_ . —P_, Egs.(2) transform to this figure and in the subsequent ones are fixed by the choice of
parameter values=1 and\o=1.

aP+ ﬁQ_O daQ P ~ 3
s C(9_X_ an E'FCK— (H)Q. 3 )
d°m, dm, 5
> +2A(I)W_2C =0. (7)
Eliminating Q from these two relations, one obtains a closed dt
equation forP, namely, o » o
The initial conditions satisfied by these moments follow

2P 9P 2P from those in Eq(5), and are given by

— +2\(t)— —c?—=0. 4)

at? at x>

my(0)=X,, mMy(0)=c,

For definiteness, throughout this woflxcept where speci-
fied otherwis¢ we shall impose initial conditions corre-
sponding to a walker initially located &t x, and moving in
the direction of increasing [i.e., £(0)= +c], so that

my(0)=x3, mMy(0)=2Cx,. 8)

Clearly, the behavior of the probability density and its mo-
ments depends crucially on the control paramat@). We
shall be interested in situations in whiakl{t) increases or
(5) decreases monotonically with timi&gs. (15) and (25) be-
low], and in comparing these with the “reference case” of
An incidental advantage of these asymmetric initial condi-constant\. Figure 1 depicts typical realizations of the di-
tions is that one can now clearly see the extent to which thehotomous diffusion process in these three situations, and
memory of the initial state is retained in the asymptotic ex-gives a very preliminary idea of what one might expect. A
pressions for various quantities, an aspect which is obscureslore quantitative analysis is carried out in the subsections
if we choose, say, symmetric initial conditions such asthat follow.
P(x,0)=48(x), P(x,0)=0.
Multiplying Eq. (4) in succession by andx?, integrating
over X, and using no-flux boundary conditions at * oo,
one finds the following equations for the momentg

P(x,00=8(x—xg) and [dP/dt];—g=—C8" (X—Xop).

B. Time-independentA

For a constant value of, Egs.(6) and(7) can be inte-
grated in a straightforward manner. The solutions obtained

=(x(t)) andm,=(x*(t)):

d’m;

dt?

dmy
+2)\(t)W=0,

and

for my(t) andm,(t) subject to the initial condition&3) are
my(t)=x +i(1—e*2“) 9
1 0 2\

and
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c? c c [m
—y2 - c
mZ(t)_X°+T+X Xo— ﬁ>(1—e 2Ah (10 ml(t)=x0+§\/;e“0’
The mean displacement saturatesxge-c/2\, the specific Ao Ao
value reflecting the initial conditions chosén both position x| erf| te+ ﬁ —erf ﬁ . (16)

and velocity and the fact that there is no stable drift term in
Eqg.(1). In contrast, the second moment exhibits, after a tranwe see that, despite the continuous increase(f, the first
sient period of the order of (9 ~*, diffusive behavior—a moment attains a limiting value. An asymptotic evaluation
consequence, ultimately, of the central limit theorem—uwithfor t>1/\/e leads to
an effective diffusion coefficient equal t#/2\. This can be
seen more clearly from the expression for the variafitg c Ce
=(x?)—(x(t))?, which is —0——+ R 17)
0

S _ C2 2)\ 1 — 2\t 1 1 —2\t\ 2
mz(t)—ﬁ t—(1-e )5( e ).

(11)

Therefore, to leading order ig, the effect of the ramp is to
depresghe value ofm, in this asymptotic regime: in a sense,
increasingly frequent switching between the two noise levels

tends to “stabilize” the mean—a result that could at first

This is also consistent with the well-known fact that dichoto-Sight seem to be counterintuitive. By stabilization we mean
mous diffusion reduces to the usual diffusiéiienep pro- ~ here the fact that the drift of the mean fromy to xo
cess in the limit in which botlt and\ tend to infinity such  +¢/(2)o) is at least partially arrested, for the asymptotic

that c?/\ remains finite, with a diffusion constant that is value of the second term in E€L6) is still less thare/(2)).
given precisely byD =limc?/(2\). As the integrals in Eq(13) for the second moment cannot

be carried out in closed form in the case of a rdifag. (15)],
we turn to the numerical simulation of dichotomous diffu-
sion. In doing so, care must be taken to properly incorporate
Equations(6) and (7) can again be integrated subject to the time dependence af(t) in the evolution of the stochas-
the initial conditions(8). We find tic trajectory of the noisé&(t), paying particular attention to
its nonstationary nature. Now, the probability that the noise

C. Time-dependentA

t v . LT L . . "
m(t)=x-+c | dt’e 2/orndr 12 remains at its initial level until time (i.e., the “lifetime
1) =% fo (12 distribution for either state of the nojsis given by
t
and w(t)=exp(—f )\(t’)dt’), (19)
0

t t
my(t) =x3+ ZCXOJ'Odt’e’ZIOMT)dT while the probability of a given transition history is

t
/ ’ " — a— I IN(t)Hdt
+Zczftdt/efzf},x(f)dfft dt"e2/ oM (ndr (13) m(ty,ta, ... )=€" "o A(ty) oty
0 0 t At
xe M\ (4 ) sty --. (19
Correspondingly, the variance is given by

If one starts in the staté(0)=+c, the probability that
&(t)=*c at any subsequent tintes then given by

t ! ! "
sm,(t)=2¢c2 fdt/e—ZIBA(r)det dtre2fnmdr o
’ ° P.(t)= % (1xe 2oMt)dty, 20)

) 2
_E ftdt/e—ZfBA(T)dT .
2\ Jo

1. A\ linearly increasing with time

(14)  With this background, one can simulate the dichotomous
noise process in the presence of a ramp by suitably general-
izing the method developed by Gillesdig5] in the case of
exponentially distributed lifetimegi.e., A=const in Eq.
(18)]. The salient results of the simulation, as far as the first
momentm, (t) and the variancém,(t) are concerned, are
summarized in Fig. 2(Here, and in all the numerical results
in Secs. lI-1V, the value ok has been set equal to unjtin

Fig. 2(a) we see, in agreement with the analytic result of Eq.
(16), thatm, indeed approaches an asymptotic level, which
where € expresses the increase of the switching rate wittmoreover decreases with increasiagFigure 2b) depicts
time. The integrals in Eq(12) can be evaluated in closed the behavior of the variance. The main conclusion is that the
form to yield increase of the variance with time is depressedeais-

We call such a variation a “ramp,” and write it as

MO =X\

t
-
.
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m, ' ' my(T)=e mP(t)+ ... (22)
05 | e=0
S £=0.1 Equation(7) then yields, to dominant order,
-~
7 (0)
04 _ ~dmy
S - 2t————2c2=0, 23
) £=05 0 (23
-
03 - [/ . which can be integrated in a straightforward manner to yield,
K for sufficiently long times,
02| | | my(t)=(c€) IN(A g+ et), (24)
up to an additive constant. We conclude that the diffusive
behavior characteristic of the process wheis fixed is now
.1 1 ) replaced by asubdiffusiveone. In Figs. 8) and 3b) we
show the fit, by the formula of Eq24), to the data of Fig.
(a) 2(b) corresponding tee=0.1 ande=0.5. The agreement is
: : : ‘ : excellent, confirming the validity of our asymptotic analysis.
0 1 2 3 4 5 6
. : 2. \ decreasing with time
dm
2 We express this as
e=0
4 . t) "t
N)=Ag| 1+ - (25)

Equation(12) now yields

r
t+71

my(t)=Xo (26)

L cT
- =05 (2hg7—1)

2)\0T— 1:|

Two qualitatively different cases can be distinguished.
(i) If 2Ny7—1>0, Eq. (26) leads to a well-defined
] asymptotic limit for the first moment, which we may write as

() =X+ > ( 2ho7 ) (27)
my(®)=Xg+ =— | =——].
0 (b) i 2)\0 2)\07'_1

0 1 2 3 4 5 6 Comparison with Egs(9) and (17) shows thatm; is now

enhancedelative to its value when is constant, in contrast
FIG. 2. First momenta) and second momerib) for dichoto-  to the case of the ramp.
mous diffusion obtained numerically from E(.) after an averag- (i) When 24,7—1<0, the first moment becomes un-
ing over 16 realizations and with different values of the ramp pounded as— o0, according to
parametek [Eq. (15)]. Parameter values and initial conditions as in
Fig. 1.
tl_Z)‘OT_ (28)

CT
m1<‘>~(m

creases. This illustrates further the stabilization of the system
under the influence of the ramp, at least as far as the behavighese two regimes are separated by the borderline value
of the moments is concerned. 2\o7—1=0, at which

To derive more quantitative results on the behavior of the
second moment, we consider the limit of smaland resort t+71
to multiple time scale analysi®r an “adiabatic approxima- ml(t):XOJFCT'”(T)v (29
tion”). One introduces a slow time variable

which diverges logarithmically as—«. The destabilization
21) of the system induced by the steady decreasa& @& now
manifest.
For the variance, one obtains from E¢s4) and (25) the
[which is essentially\ (t) itself for the simple ramp to-  following exact expressionfor 2\q7—1>0 as well as
gether with the expansion 2\ o7—1<0):

Rf:)\0+ et
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dm
2

12

1
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1.8 -
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12 -
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FIG. 3. Time evolution fort>e 12

expression Eq(24). Parameter values as in Fig. 2.

5  CPt(t+27)
M= ongrt 1)
27_2
+———[(t/r+ 1)t PoT—1
VR (A ]
027_2

(2)\07_ 1

The dominant dependence tas « is, therefore,

c?t?

omy(t)~ Phgrt 1’

)Z[u/7+141—2*w:—1]%

5

of the second moment
(empty circle$ as obtained numerically from Edl) with (a) €
=0.1 and(b) e=0.5. The full line depicts the asymptotic analytical

(30

(31)
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implying that the displacement from the mean exhilbiéd-

listic behavior—an additional signature of the weakening of
the stability of the system induced by the sytematic decrease
of \(t) with time.

IIl. LEVEL CROSSINGS IN DICHOTOMOUS DIFFUSION
A. General formulas

We now turn to the statistics of level crossings in dichoto-
mous diffusion. As a more “local” probe, this is a valuable
supplement to the study of the moments in obtaining infor-
mation on the general stability of the system.

The random variabl&(t) defined by Eq(1) is a continu-
ous process with a bounded velocity. For such a process, it
can be shown[4] that the mean value of the number
N(X,;0,T) of crossings of any specified level or threshold
X=X, in the time interval betweer=0 andt=T, is given

by
T o .
(N(X¢h;0,T))= fo dtfﬁxdx|x|P(xth X, 1), (32

whereP(x,k,t) is the joint probability density of the system

in phase space. This formula counts both upcrossings
[N;(Xtn;0,T)] and downcrossingsN | (X ;0,T) ] of Xy, ; for

the mean value of the forméatten alone, the lowefuppe)

limit of integration overx in Eq. (32) must be replaced by 0.
The mean squared value df(x;,;0,T) involves the two-
time probability density in phase space, and is given by

T T o0 ) © A
(N2(X,3;0,T)) = fo dtlj'O dtzf_ XmJ_ dx,

X |Xq) [Xal P(Xeh X1 1 t1 5 X 1 X2, E2).-
(33

These general formulas simplify somewhat in the case of

dichotomous diffusion. As the spe@d is always equal t@
in this instance, we get

T
(N(X¢p ;0,T)>=CJO dtP(Xp,t), (39

whereP(x,t)=P, (x,t) +P_(x,t) as already defined. Simi-
larly,

T T
<N2(Xth;OaT)>:CZJ dtlf dtoP(Xen t15Xen ,t2).
0 0
(35
Initial conditions must of course be specified. We shall use
the same ones as before, i.e., those corresponding to an ini-

tial positionxy and motion in the direction of increasingas
in Eq. (5).

B. Time-independentA

To illustrate the essential features of level crossing, it suf-
fices to consider the casg=0, x;,=0. (The modifica-
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tions introduced whem, andx;, are arbitrary are discussed Thus level crossings in dichotomous diffusion display strong
subsequently.Using the known solutionésee, e.g.[10]) for  fluctuations, as the standard deviation is comparable to the
P_..(x,t) in the case of dichotomous diffusion, we gir the  mean value. Moreover, asT—x, their ratio tends to an
specific initial conditions we have assumed absolute constant#/2— 1)¥2. All these results are fully con-
firmed by numerical simulations. Figure 4 shows some of the
N(O-0T) = Ef” U ) 4| q 3 Ielevant features in this regard. In particular, the full line in
(N(0:0, )>_2 e Tlo(w+lx(w]du, (36) Fig. 4(c) represents the exact analytic expression for the rela-
tive fluctuation inN, while the crosses represent the results
wherel , is the modified Bessel function of order The two  of simulation.
terms in the integrand represent, respectively, the contribu- We now comment briefly on level crossings in the case of
tions from downcrossings and upcrossings of the zero levehrbitrary threshold value,,,. Starting(for generality at an
In order to computéN?), we need the two-time probabil- arbitrary initial positionx, as well, we find that the main
ity density P(Xy,t;;X,,t5). This can be determined in the effect is a time delayTy=|x;,—Xo|/C after which level
present instance by recalling that thair (x,X) constitutes a  Crossings commence. Fg,>x,, we get(whent>Tg)
two-dimensional Markov process. Using this fact, as well as
the solutiond10] for dichotomic diffusion for all four prob-

ability densitiesP(x,&,t|X,£0,to) Whereé=+c and &=  (N(Xn:0.T))

+c, we obtain from Eq(35) after some simplification the 1 (AT U+ ATy 22

result — o \Ty _j ~u

u e +2 Hde [lO(W)-I- u—)\Td) Il(w)]du,
1 (AT u
(NZ(O;O,T)>=—J dule‘ulf "du, (42)
2)o 0
X[To(up—uz) +11(u3—uy)] where w(u, X ,Xo) = (U2—N2T3)Y2. For x;,<xo the first
. _)\Td . .

X [1o(Uy) +11(Us)]. (37) term on the right ¢ ) is absent, and the prefactorlgfin

the integrand i$ (u—ATg)/(u+ATg)]Y2

Exploiting the fact that this expression is in the form of a
convolution, one of the integrations in E@®7) can be car- i
ried out. We then get C. Time-dependentA
Now consider the effect of a systematic ramplike increase
of the switching rate\(t) upon level crossings in dichoto-
mous diffusion. As analytic expressions for the probability
densities concerned are not available in this case, numerical
=NT—2(N(0;0,T)). (38  simulations are essential. Figureg44(c) summarize the
) ) ) salient features fok(t) =N+ et with A\j=1 ande=0.001.
WhenT is very large(i.e., \T>1), Eq.(36) yields, for o ready comparison, the values correspondinge o0
the asymptotic behavior of the mean number of zero Cross;aye also been shown. As can be seen, the number of level
ings, the expression crossings in a given time interval, and its variance, are now
enhanced. A qualitative insight into the new law governing
. (39 thecrossings, at least at the level of the mean value, may be
gained by appealing once again to the adiabatic approxima-
tion now applied at the level of Eq4). To the dominant
order, this leads to a diffusion equation fBi(x,t) with a
time-dependent diffusion coefficient, admitting the solution

(N?(0;0T))=AT— fﬂdue‘“[l (u)+14(u)]
1 1 O 1
0

1/2

(N(O;O,T)>=( - 1+ H+O((AT)*2)

8

Similarly, for the variance of this number we find the
asymptotic expansion

1/2

(oN?(0:0m)=| 1- 2 |aT— 2T P(x,0)~(Int) " Y2exg —x2/4Int). (43)

1 1 7T 7T
_ EJFO(()\T)fl/z)_ (40) Inserting this form into Eq(34) yields the long time behav-
T ior
Hence the relative fluctuation in the number of zero cross-
ings is, fornT>1, (N(0;0,T))~T(In T) 12 (44)
<5N2(0;0,T)>1/2_ T 1/2
(N(0;0T)) 2 1 The full line joining the data points for the case of the ramp

i in Fig. 4(a) is a fit to the data provided by the adiabatic
. 2 T Y24 ... (41) approximation above. Once again, the excellent fit corrobo-
’ rates the accuracy of the asymptotic analysis.
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FIG. 4. Mean(a), varianceb), and relative fluctuatiorc) of the

number of zero crossings for dichotomous diffusion in a time inter-
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IV. GENERAL DICHOTOMOUS FLOW
A. Preliminaries

In this section we consider the case of a general dichoto-
mous flow, in which Eq.1) is replaced by the stochastic
differential equation

x=10x)+g(X)&(t). (45)
The master equations fé&, (x,t) andP_(x,t) now read

P d(f.P.)
+—

Tt =NO(P—Py)
and
e w=7\(t)(P+—P_), (46)
ot ax
where
fL()=f(x)+cg(x), f-(x)=Ff(x)—cg(x). (47)

Even in the standard case of a constant switching xate
partial differential equation of finite order can be derived
from Egs. (46) for the total densityP=P_+P_ only for
certain choice$16,17] of f(x) andg(x). However, the cor-
responding stationary density exigfer constant\) under
fairly general conditions in the “region of stability” where
c?g?—f2>0 or f,f_<O0, i.e., where the flows in the two
states of the noise are oppositely directed. This density is
given by|[8]

Sty + Ncg fdx
P (x)—_mex 2\ m (48)
where the + (=) sign applies if f,>0,f_<0 (f,
<0,f_>0). Nis the normalization constant. We shall find it
useful to rewrite Eq(48) in the form[17]

o _N(l 1) p( dx)
Po0= | e )

Sk
xXexpg =N | —/,
f_

where the two terms in the sum correspondP®(x) and
PSY(x), respectively. This separation is necessary, for in-
stance, in deriving the level-crossing formula to be presented
below, in Eq.(63).

Our primary interest here is in the effects of a time-
dependent switching rateg(t), and therefore we shall mainly
focus on a nontrivial flow that is, nevertheless, tractable. This

(49)

val from t=0 to t=2000 time units sampled every 100 time units, IS the case of a linear drift, given biy(x) = — yx and g(x)

as obtained from Eq1) with e=0 (crossesand e=0.001(empty

circles. The full lines in(a) and(c) represent the asymptotic ana-
lytical results, Eqs(44) and(41), respectively. Parameter values as

=1,ie.,

x=—yx+&(1), (50)

in Fig. 2, but averaging has been performed over 20 000 realiza-

tions, with initial conditions randomly chosen betwegi®)= +c
and£(0)=—c.

where y>0. As the noiseé(t) switches between its two
levels, there is an alternation between flows with stable criti-
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cal points att/ y and — ¢/ y, respectively. In this cage(x,t)

PHYSICAL REVIEW E65 051109

My(0)=x3, My(0)=2Xo(C— ¥Xo). (56)

satisfies a second order equation, which is most conveniently

written for our present purposes in the form

J(xP)
X

, 9 J(xP)
X" Ix

+y[2M (1) — 7] (51)

In the special case of a constantthe time-dependent solu-

tion P(x,t) of Eq.(51) is in fact known in closed forml6],

Again considering first the case of a time-independente
find the solutions

(e— NnN_e~ 2>\t) (57)

m;(t)=xee~ "+ ———
1() 0 (2)\_,)/)

and

my(t)= 5 —C(ZYXO_C)}e‘ZVt

2
y(2\+ ) +[X°+ y(2N—7)

and is expressible in terms of hypergeometric functions. The

corresponding normalized stationafgsymptoti¢ density

PS{(x) has a support in the interval bounded by the critical

points ¢/, where it is given by 8]

YT (N+2y)12) c2— 422 1Ny (5
\/;C_1+2)‘/7F(7\/’y)

We shall therefore takg, to lie in this interval. Further, for

PSY(x)=

2c
2N—7)

C
(2N +y)

+ ( —xo]e(z“”t. (58)
These solutions are to be compared with the expressions in
Egs.(9) and (10) which obtain in the case of free dichoto-
mous diffusion, to which they reduce in the limit=0. Ow-

ing to the presence of a stable drift, the moments now lose
their dependence on the initial conditionstase~. The mean

ing the equations satisfied by the momentsg,ofe shall also

of the choice£(0)= +c for the initial noise level and sub-

require that the first derivativd PSYdx be bounded at the Sedquently falls back to zero asymptotically. The variance no

end points inx, which requires\=2vy. Hence we restrict

longer displays diffusive behavior, but instead approaches a

. . 2 < - :
ourselves to this range. The changes that arise for small&onstantc®/y(2h+y). This is consistent with the value ob-

values of\ are of interest in their own rigtfor instance, it

is clear from Eq.(52) that there is a qualitative difference

[16] in the shape of this density between the casesy and

A <1y], but we do not digress to consider this aspect here.

B. Moment equations

From Eq.(51), we find that the moments, = (x(t)) and
m,=(x?(t)) satisfy the equations

2

ml+[2)\(t)+ y]%%—Zy)\(t)ml:O (53

dt?

and

2

dt2 dt 2 '
(54)

The initial conditions thatm; and m, now satisfy follow
from the initial conditions

P(x,0)= 6(x—Xg)

and

d
[dP/ot]i—o=— - [(C= ¥X) S(X=Xo)],

(55)
and are given by

my(0)=Xo, My(0)=c— yXo,

tained directly fromPSY(x) as given by Eq(52).

When\ (t) increases on a ramp, the adiabatic approxima-
tion implied by the scaling in Eq21) may again be em-
ployed to draw conclusions regarding the asymptotic behav-
ior of the moments. This yields, to leading order,

2

mO=0 e et e o1’

(59

Figures %a) and 3b) show, respectively, the behavior of the
mean and the variance for a set of values of the ramp param-
eter e ranging from 0 to 0.5. Hera, and c have been set
equal to unity, whiley=0.25 (so thatA>2vy). A more de-
tailed look at the variance induced by the ramp in the long
time regime is provided by Fig.(6), where the full lines
correspond to a fit by the expression in the second of Egs.
(59). The agreement with the results of simulations is, again,
quite satisfactory.

C. Level crossings
1. General formulas

Starting with the general formula of E(B2), an expres-
sion may be derived for the mean number of threshold cross-
ings for the arbitrary dichotomous flow of E¢45) as fol-
lows. Using the flow equation to eliminate the velocity
variable in favor of¢, we have

P(x,x,)=(8(x— ()~ g(x)) (60)
where the averaging is over the sample spacg dhis leads
to
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©

5 10 15 t 20

FIG. 5. As in Fig. 2, but in the presence of a linear drift term
[Eq. (50)] and for different values of the ramp parameteiin (c)
the numerically obtained values of the second mom@mpty
circles, crosses, and triangleare compared with the asymptotic
analytical resul{full line), Eq. (59). Parameter values as in Fig. 2,
with y=0.25; number of realizations 50 000.
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P(X,X,t)=8(X—f . (X))P(X,t)
+8(x—f_(X))P_(x,t). (61)

Formal expressions for the mean number of upcrossings and
downcrossings of a given leve},, can now be written down.
For the mean total number of crossings in the time interval
from O to T, we obtain the simple formula

i
(N0 i0T)= [ a0 [P 6.0

+[ - (Xn) [P (Xen D] (62

The integrand in Eq(62) can be identified with an instanta-
neous mean ratex;, ,t) of crossings of the level concerned.

If a stationary distribution exists, as in E@8) or Eq. (49)
above, then the mean rate of crossings asymptotically ap-
proaches the stationary value

xn fd
rSt(xth,t)=/\/’exp< ZAJ h—x). (63

C292_ fZ

2. Level crossings in linear dichotomous flow

Turning once again to the linear dichotomous flow of Eq.
(50), the known solutions foP. (x,t) may be used in Eq.
(62) to write down({N(x,;0,T)) explicitly, in principle. As
the solutionsP . (x,t) involve very lengthy expressions, we
do not do this here.

For the case of a constant the asymptotic value of the
mean rate of crossings can be written down from &®3).
We find

T((N+27y)/2
Y ((ZM V)/2y) o2 (64
JaeMIT (M )

For zero crossings, this simplifies further to

rSt(Xth 1t) =

YL((N+2y)/2y)
Jal(\y)

For \(t) varying on the ramp, analytic expressions for
P_.(x,t) are not available. However, we may use the same
adiabatic approximation as in the preceding sections to arrive
at the leading asymptotic behavior of various quantities. We
thus find, for sufficiently large,

rsiot) =

(65)

T (M) +27)/2y)
Jac TR0 (\(1)/ )
X (C2— y2x2) "MWy, %0

P(x,t)~

where\ (t)=Ay+ et. This is used in the analysis of the nu-
merical results presented in Figs. 6 and 7, whege=1.c
=1, andy=0.25, as in the preceding subsection.

In numerical simulations, it is more convenient to work
with the mean(N(xy,;0,T)) itself, rather than the rate
r (X, t). Figure &a) compares the mean number of zero
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crossings up to time for e=0 and e=0.001, respectively,
while Fig. 6b) does the same for the corresponding vari-
ances. Although there appear to be significant differences
between the two cases, the relative fluctuation
(S8N?(0;01))Y4(N(0;01)) is practically the same in both
cases, as demonstrated in Fi¢c)6Figures 7a)—7(c) are the
counterparts of Figs.(6)—6(c) for a much larger value of,
namely,e=0.1. The full line running along the data points
corresponding to the ramp in both Figafand Fig. Ta) is a

fit to the data using the adiabatic approximation, which
yields

Y

=,

Once again, we see that the fit is very good indeed.

L ((Notet'+2y)/2y)

(N(0;01))~ F'((Ngt+et’)]y)

(67)

V. THE CASE OF MULTILEVEL NOISE
A. The model

Finally, we extend some of the results obtained in the
foregoing to the case of a multilevel generalization of di-
chotomous noise, but one which preserves nevertheless the
features of discreteness, non-Gaussianity, and a finite corre-
lation time that the latter possesses. Our motivation is to get
an idea of the role played by the dimensionality of the state
space of the discrete noise. In practical modeling, one may
well have a discretsetof values for the random forcing that
comprises more than just two levels.

The specific model we shall consider is a generalization

of dichotomous diffusion, given by the flow= &(t), where
the velocity £(t) is a g-state Markov process that takes the
valuescy, . .. ,Cq, andqgis a positive integer 2. As before,
the jumps in&(t) are assumed to occur at random instants of
time, at a mean transition rake(which is time dependent in
general. For simplicity, we also assume that from any level
c; of the noise, a jump may occur @ny other levelc;(j
#i) with equal probability{=(q—1) *]. This assumptlon
may be relaxed or modified, to lead to various other
models—for instance, transitions restrictedcte- c;.., lead
to a generalized model of Taylor dispersidri], and so on.
Denoting byP;(t) the probability thaté(t) =c;, the sta-
tistics of the noise is given by the master equation

Pi(t)=—(q—1)N(D)P;(1) +\(t E P;( (68)

For an arbitrary initial levek(0)=c, of the noise, the solu-
tion to Eq.(68) is given by

P(t)=0 1+ (1-q e o
and
Pi(1)=q Y (1—e /M),

i #k. (69
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FIG. 6. As in Fig. 4, but in the presence of a linear drift, Eq.

(50). The full line in (a) represents the analytical result, E§7).

This is a generalization of E¢20). The lifetime distribution

of any state of the noise is now co
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: (70)

t
w(t)zexp( —(gq— 1)f0)\(t’)dt’

where the extra factor ofq—1) in the exponent must be
noted.

The master equation for the probability densities
{Pi(x,t)} of the diffusion process reads

J d
P Pi(x,t) +¢; x Pi(x,t)=—(q—1)A(t)Pi(x,1)

q
+x(t)§ Pi(x,). (71
IEd!

For the first momenin, =(x(t)) this yields the equation

dm, &

=2 GiPib), (72

=1

whereP;(t) is given by Eq.(69). With the initial condition
m,(0)=X,, the solution of Eq(72) is

my(t) =Xo+(c)t+(c,—{c)) J;dt’e*“”g)\(ﬂdﬂ (73

where (c)=q 12fc; is the mean drift velocity. We shall
henceforth takéc)=0, to eliminate this trivial drift.

The calculation of the second moment is more elaborate
in this general case, since the equation satisfiedhgft) is

q
23 amy(), (74
t i=1

where my;(t) is the “partial” first moment [xP;(x,t)dx.
These quantities have therefore to be determined first. The
formal solution form,(t) that finally results is quite lengthy,
and we do not give it here.

B. Time-independent
For constant, we obtain

C
My () =xo+ q—;u—ef‘m), (75)

which is the generalization of E@9). (We recall thatc, is
the initial velocity statg.As t— oo, this saturates to the value
Xo+ Ck/(g\). Again, this is corroborated by numerical simu-
lation. Figure 8a) shows the behavior of the mean in the
caseq=4.c;={—2,—1,+1,+2}, andc,=1. The rate\, has
been set equal tg in order to compensate for the factor
(g—1) in the exponent in E|70), thereby facilitating ready
comparison of numerical values with those obtained in the
preceding sections in the case of dichotomous diffusion. The
curve corresponding te=0 in Fig. 8a) saturates to a value
0.75, in agreement with the theoretical prediction.

The variance ok in the case of a constaitis found to
be
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m ' ' o C. \ increasing on a ramp
g=
! | | For \ increasing with time on a ramp as in Ed5), we
R e=0.1 find
~ -
0.6 - 4 . T 2
/ My (1) =Xo+ Cy \/ 5—eM o2
T RRREEEETEEEEE £=05 (D=0 C 2Qe€
L ) _
v ge /49 /4q
04 //, | X|erfl t 2 +)\0 26) erf( )\0 26)}
(77)
,/ This is the generalization of Eq16) to our g-state model.
02 L ] For t>1/\/e, we now get
(Dot 5~ (78)
I = ml ~X0 —_— .,
(a) 2o g}
0 1 2 3 ; 5 ¢ 6 This gives an idea of the relative roles playedégndq in

the stabilization of the meafin the sense already explained
in Sec. 11Q under the action of the ramp. The numerical
£=0 results are again in agreement with the theoretical predic-
tions, as seen in Fig.(8. Finally, in Fig. 8b) for the vari-
ance, the curves corresponding to nonzero values abw

- €=0.1 drawn entirely on the basis of the numerical simulation, in-
dicate the expected trend toward subdiffusive behavior for
asymptotically long times.

Regarding level-crossing statistics in the multilevel model
under discussion, we note that a formal expression for the
mean number of crossings of a thresha|g may easily be
written down as a generalization of that obtained in the di-

. chotomous case. In fact, for the multilevigdw given byk
=f(x)+g(x)&(t) where¢ is the g-state Markov noise de-
fined in this section, the formula in E¢62) generalizes di-
rectly to

o
(b) - <N(Xth;0:T)>:fO dtzl |fi(Xn) [Pi(Xen 1), (79)
0 1 2 3 4 5 ¢ 6

wheref;(x) = f(x) + ¢;g(x). However, we do not pursue this
FIG. 8. As in Fig. 2, but for a four-level noise € 4), with c; aspect any further here, as no analytic solutionFex,t) (in
={-2,-1+1,+2} andro=1/3. the case of constanX) is available as a reference and for
comparison with the results of simulation with constant as

st~ 2(c?)  (AcH)—cd)  4(c?) o well as time-varying\.
H(t)= -
ax @) (an? VI. CONCLUSIONS
2((c?y—c?) c? The principal result of this work has been to show that a
+ —te—q)\t_ _e—Zq)\t (76) . .. . . | ) d
ax (N2 ' systematic variation in time of a control parameter, in a dy-

namical system driven by dichotomous or multilevel noise,
may introducequalitative changes in its statistical properties

A e 2 i o . relative to the unforced case. These changes already appear
where (c%)=q" Zic{. The effective diffusion constant in j, the case where the deterministic dynamics in the absence
this generalization of dichotomous diffusion is theref@e of noise is very simple. These may involve, for instance, the
=(c?)/(g\), in complete agreement with the results of switching from diffusive to subdiffusive, or, on the contrary,
simulation, as seen from the curve corresponding=® in  ballistic behavior of the variance; or the enhancement of the
Fig. 8b). If (c)#0, the diffusion constant in this model is crossings of some prescribed threshold by the stochastic tra-

((c®—(c)?)/(an). jectory.
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Our analysis of the level-crossing dynamics has also re- Finally, the investigation of dynamical systems forced by
vealed some rather unexpected features that are already esther forms of noise and subject to systematic time variation
hibited in the case of a fixed control parameter. It has in facbf their control parameters could reveal whether “universal-
been shown that the fluctuations of the number of crossingiy classes” can be identified, as far as the moment and level-
about its mean value are comparable to the mean itself. Thisrossing dynamics are concerned. In particular, the precise
property should have important repercussions in the interpreaoles of the discreteness, the non-Gaussian character, and the
tation and prediction of extremes, especially in connectiorcorrelation time of the noise would be worth clarifying in
with their next likely recurrence, a problem of the utmostgreater detail.
importance in environmental science and engineering. From the standpoint of applications, we believe that the

The analysis carried out in the present paper can be exesults reported here provide useful tools for approaching
tended in several directions. One such would be to the cagarediction-related problems of considerable concern in the
of nonlinear dichotomous flows, particularly flows that admit context of atmospheric science and also economics and fi-
instabilities and multiple states in the deterministic limit. Thenance, among others.
interference of these instabilities with the stabilizing or de-
stabilizing trends induced by the time variation of the control
parameter could then lead to different modes of behavior that
would be worth exploring. Another possible extension is the This work was supported in part by the Interuniversity
investigation of the role of an external periodic forcing su-Attraction Poles Program of the Belgian Federal Government
perimposed on the dichotomous noise. The main questioand the Belgian National Fund for Scientific Research. V.B.
here is the possibility of an enhancement of the response @fcknowledges the warm hospitality of the Univerdiiere
the system via a mechanism of the stochastic resonance typsée Bruxelles.
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